Метеостанция на ладони: зачем в телефоне барометр и как его использовать
Вы привыкли узнавать погоду на ближайшие дни из Интернета, а ваш знакомый кидает мимолетный взгляд на телефон и выдает прогнозы точнее официальных? Только он один знает, в какие дни лучше всего клюет карась? Видимо, в вашем окружении завелся маг и заклинатель погоды. Вам повезло: может быть, однажды он по вашей просьбе вызовет дождь или разгонит тучи над городом…
На самом деле ничего загадочного в этом нет. Просто ваш приятель использует барометр в телефоне, который и дает ему волшебные подсказки. Хотите сами стать таким же «магом»? Тогда читайте, для чего и как использовать барометр в мобильном устройстве.
Возможности мобильного барометра
Барометр – это прибор для измерения атмосферного давления – силы, с которой воздушная масса давит на поверхность земли. Наблюдение за изменением его показателей и правильное понимание значений позволяет предугадывать:
- Как уже сказано, грядущее изменение погоды. Снижение атмосферного давления обычно происходит перед дождями и снегопадами, повышение – перед установлением ясных, солнечных дней.
- Возможное ухудшение самочувствия у метеочувствительных людей.
- Скорую смену направления ветра (полезно для туристов, любителей запускать дроны, спортсменов-парапланеристов, парашютистов, серферов и т. д).
- Изменения в поведении рыб и животных (пригодится охотникам и рыболовам).
Применительно к мобильному телефону функции барометра полезны для:
- Определения точного положения аппарата в пространстве. Дает возможность узнать не только широту и долготу, но и высоту над уровнем моря. Это может пригодиться при фотографировании (некоторые приложения наносят координаты телефона на снимки) и в навигации – составлении маршрутов с учетом рельефа местности.
- Управления опциями устройства в зависимости от силы нажатия на экран (например, изменением толщины штриха при рисовании).
При желании барометру в телефоне можно найти еще массу применений, например, определять с его помощью высоту объектов. Но это уже на любителя.
Как узнать, есть ли барометр в интересующем вас телефоне
Проще всего это узнать из характеристик аппарата. Если смартфон способен определять давление, в числе его сенсоров должен быть упомянут барометрический датчик или датчик давления. На собственном телефоне наличие этого датчика можно выяснить с помощью приложений, собирающих сведения о системе и аппаратном обеспечении, например:
- Phone information (на скриншоте выше).
- Aida 64.
- Мое устройство.
- DeviceInfoHW и аналоги.
Это утилиты для девайсов на Андроиде.
Смотрите также:
- Настраиваем раздачу мобильного интернета по Wi-Fi с телефона на Windows Phone 8 (8.1) [общий интернет]
- WhatsApp для компьютера: 2 варианта использования мобильного мессенджера на ПК
- Как выйти в интернет с компьютера используя телефон (Android, Windows Phone) как модем по Wi-Fi?
- Управление телевизором LG с помощью смартфона (iOS, или Android). Настройка LG TV Remote
- Большой брат следит за тобой: как определить местоположение человека по телефону
Тестирование работоспособности и точности сенсора давления проводится под открытым небом с включенной функцией геолокации. Однако если нет возможности (или желания) выходить на улицу, берите на вооружение метод, предложенный нашими находчивыми соотечественниками – поместите телефон в прозрачный герметичный мешочек, наполненный воздухом, и сдавливайте его руками. При нажатии на мешок давление воздуха внутри него увеличивается, и исправный датчик на это реагирует.
Насколько точно снимает показатели барометрический сенсор вашего телефона, с помощью мешка не определить, но чувствительность проверить можно.
Лучшие приложения-барометры
Чтобы «превратить» телефон в полноценный измерительный прибор, не хватает самой малости – приложения, которое сымитирует его работу. Таких приложений немало, и основная их масса доступна бесплатно. Ниже неполный перечень наиболее удобных, красивых и наглядных, на мой взгляд.
Для Андроид
- Барометр про – стильно оформленное приложение + виджет на рабочий стол. Функционирует не хуже настоящего профессионального прибора. Использует показатели датчиков давления, GPS и данные ближайших к вам метеостанций. Отображает показатели в гекто-Паскалях (hPa) и дюймах ртутного столба (INhg). Дополнительно показывает температуру и влажность воздуха. Сохраняет историю измерений.
- Точный барометр. Показывает местное и среднее (по уровню моря) атмосферное давление. Получает информацию как с датчиков телефона, так и с метеостанции ближайшего к вам аэропорта. Поддерживает возможность калибровки бародатчика. Ведет автоматическую запись показателей через заданные промежутки времени. Отображает результаты в разных единицах измерения – hPa, INhg, мм. ртутного столба и других.
Для Android и iOS
- BarometerPlus. Помимо атмосферного давления, изменяет температуру и влажность воздуха (если это функции поддерживает телефон). Ведет историю и уведомляет пользователя об изменениях показателей. Получает и анализирует информацию с датчиков устройства и ближайших метеостанций. Поддерживает множество единиц измерений. Имеет функцию калибровки сенсора и набор красивых тем оформления.
Для iOS
- Барометр альтиметр и термометр. Отображает показатели атмосферного давления, влажности, скорости ветра, наружной температуры воздуха и другую информацию о погоде в вашей местности, а также координаты телефона по спутнику. Получает и обрабатывает информацию с датчиков устройства и ближайших метеостанций. Если айфон не оборудован сенсором давления, выдает показатели только на основании сторонних источников.
Для использования этих и других аналогичных приложений особые знания не нужны. Достаточно выбрать удобные для себя единицы измерения и включить функцию определения геопозиции смартфона. После этого всё, можно удивлять друзей предсказаниями.
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов
Какие датчики можно найти в смартфонах: для чего они нужны и как устроены
Рассказываем о том, какие датчики есть в современных смартфонах, для чего они предназначены и как работают.
Современные смартфоны буквально нашпигованы огромным числом датчиков. С их помощью гаджеты строят маршруты на карте, отслеживают вашу активность в фитнес-приложениях, распознают всевозможные жесты и делают множество других вещей, к которым мы привыкли. Сегодня мы окунемся в эту тему чуть глубже и расскажем не только о том, какие датчики есть в смартфонах, но и зачем они нужны.
Содержание
Акселерометр
Акселерометр — это сенсор, измеряющий проекцию кажущегося ускорения. Говоря простым языком, он определяет пространственное положение смартфона, и то расстояние, на которое он переместился.
Акселерометры есть во всех, даже самых бюджетных смартфонах. Правда, в откровенно недорогих гаджетах их чувствительность оставляет желать лучшего. Он относится к разряду MEMS-сенсоров и, по сути, представляет собой крайне миниатюрный механический элемент с грузиками и очень маленькими парными пластинами конденсаторов. Первая пластина остается неподвижна, а вторая изгибается при изменении положения смартфона в пространстве (под действием ускорения). Расстояние между пластинами изменяется, а вместе с тем изменяется и заряд на них. Акселерометр постоянно измеряет заряд на таких пластинах, и на основе этого определяет, насколько велико отклонение подвижной пластины с грузиком и каково направление этого отклонения.
Акселерометр может распознать движение смартфона по трем осям. Это пригодится, например, для подсчета шагов и ориентации на карте.
Гироскоп
Принцип работы гироскопа во многом напоминает уже рассмотренный нами акселерометр. Сильно перекликаются и функции этих датчиков. Правда, если акселерометр больше ориентирован на определение ускорения, подсчет шагов и пройденного расстояния, то гироскоп «заточен» на определение ориентации смартфона в пространстве, делая это намного точнее акселерометра.
Гироскоп в смартфонах, по сути, представляет собой небольшую емкость с подвижным объектом, который смещается при изменении ориентации гаджета, тем самым меняя емкость соответствующих конденсаторов. Ну а, измеряя эту емкость, смартфон «понимает» как изменилось его положение в пространстве.
Гироскоп смартфона широко используется в виртуальной реальности и играх с управлением путем наклона и поворота гаджета. Завязаны на него и многие другие функции смартфона. Но, в целом, акселерометр и гироскоп работают в паре, удачно дополняя друг друга.
Магнитометр (компас)
Это еще один сенсор для пространственной ориентации. Как понятно из его названия, датчик работает с магнитным полем. Магнитометр действует в компании с акселерометром и GPS, облегчая навигацию. Именно благодаря ему вы не только можете ориентироваться в лесу, но и видите не просто точку на карте, а стрелку, показывающую в каком направлении вы смотрите.
Барометр
Барометр обычно устанавливается только во флагманские смартфоны и помогает GPS более точно ориентироваться в пространстве. Вот только если GPS делает это на плоскости, то барометр определяет положение телефона по высоте.
Главная задача барометра — измерение атмосферного давления, на основе чего рассчитывается высота, на которой находится телефон — чем оно ниже, тем выше вы забрались. Это может пригодиться и для определения, на каком этаже вы находитесь, и для фиксации физической активности в фитнес-приложениях и для многих других задач. Сам же барометр в смартфоне, упрощенно говоря, представляет собой небольшую коробочку с мембраной, изгиб которой определяет текущее атмосферное давление.
Это последний в серии датчик, непосредственно отвечающий за позиционирование смартфона. Хотя называть его датчиком не совсем корректно, и, по сути, GPS представляет собой сложную технологию для связи телефона со спутниками. Современные смартфоны поддерживают множество систем спутниковой навигации. Это и российская ГЛОНАСС, и европейская Galileo, и китайская BDS (BeiDou).
Недорогие смартфоны обычно используют канал L1 для GPS-позиционирования, дающий лишь приблизительное представление о вашем местоположении. А в устройствах верхнего уровня предусмотрен двухдиапазонный GPS с поддержкой L1 и L5. При определении местоположения через канал L5 приоритетным становится сигнал, который первым достиг спутника. Тем самым отсекаются отраженные сигналы, и точность позиционирования повышается.
Датчик приближения
Это еще один датчик, который есть во всех, даже самых недорогих смартфонах. В отличие от всех предыдущих сенсоров, которые прячутся внутри корпуса гаджета, этот датчик может увидеть любой желающий — обычно он находится над экраном рядом с фронтальной камерой устройства. Ну а главная задача сенсора отлично понятна и из его названия — он призван определять приближение к смартфону каких-либо объектов.
Именно благодаря датчику приближения смартфон умеет отключать экран при приближении к уху, тем самым избавляя вас от ложных касаний при разговоре. В разных смартфонах устанавливаются разные модели таких датчиков, сильно отличающиеся друг от друга принципом действия. Так, во многих случаях датчик приближения представляет собой набор из ИК-лампочки и фотодиода. Первая излучает волны в ИК-диапазоне, а второй измеряет количество попавшего на него отраженного света. Ну а дальше все просто. Если рядом с датчиком нет никаких объектов, излучаемый им свет просто рассеивается в пространстве, а при приближении к нему какой-то преграды, ИК-волны начинают от нее отражаться и попадать на фотодиод. Смартфон же понимает, что ему пора отключать экран.
Некоторые производители предпочитают экономить на таких датчиках, заменяя их программными алгоритмами, другие устанавливают в телефоны копеечные сенсоры, третьи подменяют из работу акселерометром и гироскопом. Ну а в итоге все это приводит к некорректной работе функции — в сети можно найти массу жалоб на этот счет. Да и сам датчик приближения — очень интересная тема, к которой мы вернемся в следующих материалах.
Датчик освещенности
Здесь все просто и понятно. Если датчик приближения фиксирует отраженный свет, то сенсор освещения просто определяет уровень освещенности окружающего пространства. На основе этих измерений автоматически регулируется яркость экрана, делая работу со смартфоном более комфортной.
Барометр в телефоне и смарт-часах для «чайников». Как он работает и для чего нужен?
Если вы не особо увлекаетесь физикой, эта статья должна вас немного поразвлечь, так как обычно человек даже не задумывается о таких на первый взгляд «очевидных» вещах.
Я попытаюсь на пальцах объяснить, как работает датчик давления (он же — барометр), используемый в современных смартфонах и смарт-часах. Но прежде, чем говорить об этом, нам нужно понять, для чего вообще он нужен и что конкретно измеряет.
Да, каждый взрослый человек слышал словосочетание атмосферное давление. И все знают, что это давление может повышаться или понижаться. Многие даже знают, что когда давление падает, стоит ждать ухудшения погоды. А если падает очень быстро — скорее всего, будет очень сильный ветер. Всё это — банальные вещи, хотя и они требуют объяснений.
Но что, если я скажу вам, что именно благодаря атмосферному давлению вы можете попивать апельсиновый фреш через трубочку? Как иначе сок может преодолеть силу тяжести и направиться вверх? Ведь не существует никакой «силы всасывания» или «силы вакуума». Если бы вы смогли попробовать попить сок через трубочку в космосе, где нет атмосферного давления, вам бы не удалось этого сделать.
Или подумайте, почему, когда вы втягиваете ртом воздух из пластиковой бутылки, она сжимается? Кто или что сжимает бутылку? Однозначно, это не воздух, который вы втягиваете.
В общем, давайте разбираться с мобильным барометром и давлением, которое он измеряет. Я хочу, чтобы вы хорошо понимали суть атмосферного давления, прежде чем говорить о датчике, который его измеряет. Поэтому в первой части статьи уделим внимание именно сути такого явления, как атмосферное давление.
Если вы хорошо в этом разбираетесь, тогда сразу переходите к той части, где мы будем непосредственно обсуждать мобильный барометр.
Что такое атмосферное давление?
Рыбы живут под водой. Они могут легко передвигаться не только вперед-назад, но и вверх-вниз. Однако мало кто задумывается над тем, что мы также «погружены» в что-то наподобие жидкости — атмосферу. И благодаря этой «жидкости» также можем не только передвигаться по горизонтали, но и подниматься вверх на самолетах и вертолетах, отталкиваясь от воздуха.
Но что такое атмосфера и почему мы погружены в нее?
Атмосфера — это воздух, а воздух — это смесь различных газов, то есть, «плавающих» в пространстве молекул различных веществ. И я говорю не только о банальном кислороде или углекислом газе. В воздухе также летают молекулы обычной воды (H2O) и других веществ.
Когда вода испаряется, с ее молекулами (H2O) ничего не происходит. Вопреки распространенному заблуждению, они не «рассыпаются» на атомы кислорода (О) и водорода (H2), а ровно в том же виде, в котором были водой, начинают парить в воздухе. Когда количество таких молекул (H2O) в воздухе становится большим, мы говорим, что повысилась влажность воздуха, то есть, в воздухе буквально стало очень много обычной воды.
Вода, азот, кислород, водород, метан — всем этим забито всё пространство вокруг нас. И каждая из этих молекул имеет свой вес. А когда что-то имеет вес, оно тут же падает на землю, то есть, притягивается к центру земли.
Мы находимся на самом дне этого «воздушного океана», глубиной примерно в 100 км. То есть, над нами нависает гигантский слой воздуха толщиной
100 км и весом в несколько миллионов миллиардов тонн:
Но если над нами так много воздуха и он имеет вес, почему мы не ощущаем никакой тяжести?
Прежде всего, воздух очень тяжелый. Если взять обычный маленький столик (метр на метр), то воздух будет давить на него с такой же силой, как если бы мы разместили на этом столе 10 легковых автомобилей:
И на каждый квадратный сантиметр любой поверхности, будь-то листочек на дереве или макушка головы, воздух давит с такой же силой, как килограммовая гиря. Получается, на каждый квадратный метр любой поверхности давит груз в 10 тонн!
Но как так получается, что мы не можем удержать на вытянутой руке 20-килограммовую гирю и в то же время можем легко держать раскрытую ладонь, на которую давит примерно 70 килограмм воздуха?
Весь секрет в том, что воздух не давит на все предметы только сверху вниз. Давление здесь работает так же, как и под водой, то есть, давит со всех сторон сразу. Нам не нужно пытаться удержать руку под весом атмосферы, ведь на нее давит 70 килограмм воздуха не только сверху, но и снизу:
Более того, ровно такое же давление испытывает наше тело не только снаружи, но и изнутри (воздух в легких, в желудке, в ушах за барабанными перепонками, давление крови). Поэтому суммарное давление на тело равняется нулю и мы его не ощущаем.
Когда мы вставляем трубочку в стакан с жидкостью, она не поднимается вверх, но как только мы начинаем вытягивать (высасывать) из трубочки воздух, его становится меньше и давление воздуха внутри трубки падает. В этот момент, атмосферное давление прижимает жидкость в стакане и она поднимается вверх по трубочке:
То есть, жидкость поднимается не потому, что мы ее как-то «притягиваем». Мы просто выкачиваем немножко воздуха из трубочки и атмосфера своим весом тут же поднимает жидкость. В космосе этот трюк не сработает, так как ничто не будет давить на сок в стакане.
То же касается и бутылки. Когда мы вытягиваем из нее воздух, давление внутри уменьшается и вот теперь бутылка начинает «ощущать» на себе всю тяжесть атмосферы. Ведь до этого давление воздуха снаружи бутылки полностью компенсировалось таким же давлением изнутри бутылки.
И чем больше воздуха мы выкачаем откуда-то, тем сильнее атмосфера раздавит этот предмет.
Или возьмите обычную присоску. Как она работает? Неужели весь секрет в ее «липкой» поверхности? Конечно же, нет. Весь секрет в том, что прижимая присоску к гладкой поверхности, вы выталкиваете из-под присоски воздух, создавая там пониженное атмосферное давление. И теперь атмосфера с огромной силой (10 тонн на квадратный метр) давит на присоску с внешней стороны и удерживает ее. Чем больше размер присоски, тем большая площадь, на которую будет давить атмосфера и тем сильнее она будет прижимать ее.
В общем, главное понимать одну простую вещь — мы находимся на «дне» атмосферы, то есть, на «дне океана» из различных молекул. И давление атмосферы постоянно изменяется.
Например, когда солнце нагревает землю, молекулы воздуха начинают ускоряться и расширяться, такие «горячие» молекулы поднимаются вверх, в результате чего давление внизу падает. Но как только давление в каком-то месте упало, сюда сразу же устремляются молекулы из близлежащих участков с высоким давлением:
Такое резкое движение мы ощущаем как ветер. Если разница в давлении слишком высокая, то и «напор» молекул будет очень сильным. Настолько сильным, что может вырывать деревья или разрушать дома.
Зачем на телефонах и часах нужен барометр, измеряющий давление?
Итак, мы живем на «дне океана» под названием атмосфера и неплохо было бы знать текущее давление. Как минимум, это позволило бы нам лучше предугадывать погоду на ближайший вечер.
Как я уже сказал, если давление воздуха вокруг вас падает, можете быть уверены в том, что рано или поздно оно начнет выравниваться. То есть, молекулы воздуха из области высокого давления устремятся к тому месту, где вы находитесь. Этот процесс будет сопровождаться ветром и плохой погодой.
Мы часто слышим от синоптиков такие слова как циклон или антициклон. Это и есть области низкого давления (циклон) и высокого давления (антициклон). То есть, вся погода крутится вокруг атмосферного давления.
К примеру, в день подготовки этой статьи барометр на моем смартфоне показал такую картину:
Уже в ближе к 18:00 я понимал, что ночью будет очень плохая погода. Так и произошло. К девяти часам вечера погода очень испортилась, начались сильные порывы ветра, метель.
Ровно то же мне могли показать и смарт-часы:
Для тех, кто увлекается рыбалкой, барометр в часах или смартфоне также является незаменимым инструментом. Ведь рыбы чувствуют изменение давления и по-разному себя ведут в зависимости от этого давления.
Но изменение погоды — далеко не главная функция барометра. В основном, барометр на фитнес-трекерах и многих спортивных часах используется для определения высоты. То есть, так называемый альтиметр (высотомер) — это и есть барометр, который сразу переводит давление в высоту.
На самом деле, концепция здесь очень простая. Взять, к примеру, бутылку с водой. Мы можем легко поделить эту воду на секции:
Интуитивно понятно, что давление воды на стенки бутылки будет разным в зависимости от секции. Мы даже можем убедиться в этом экспериментально, проколов маленькие отверстия в каждой секции:
Там, где давление воды выше, вода будет выталкиваться под более сильным напором и наоборот. Получается, мы можем измерять глубину, просто измеряя, с какой силой вода давит на наш измеритель.
Ровно то же происходит и с атмосферой. Чем «глубже» мы находимся, тем сильнее давление молекул воздуха. Соответственно, чем выше мы поднимаемся, тем ниже это давление:
Если бы у нас был какой-то прибор, ощущающий давление воздуха, мы могли бы легко переводить его показания в метры. Ведь мы хорошо знаем, какое нормальное давление на уровне моря. Получается, если это давление падает, значит мы либо поднимаемся, либо портится погода.
И это очень важно понимать, так как многие пользователи жалуются на показания высотомеров в своих фитнес-трекерах или спортивных часах. Вы можете находиться весь день в одном месте, а часы будут постоянно показывать вам перепады высоты. На самом же деле, это просто меняется давление воздуха .
Кроме того, многим устройствам нужна калибровка альтиметра (высотомера), чтобы устройство изначально понимало, какое атмосферное давление принимать за условные 0 метров высоты. Ведь вам зачастую не нужно знать свою высоту над уровнем моря, вы хотите знать ее над уровнем земли, на которой стоите.
Для такой калибровки обычно используются показания GPS-трекера (в смартфоне или часах). Когда устройство по спутникам определяет свои координаты, оно сразу же получает высоту этого места над уровнем моря (скажем, 150 метров) и принимает ее за условный ноль. Теперь, при подъеме на 9-й этаж, устройство покажет не 179 метров высоты над уровнем моря, а 29 метров от земли.
И прежде, чем мы уже наконец-то поймем, как работает барометр, осталось ответить на последний вопрос.
В чем же измеряется атмосферное давление?
К сожалению, для отображения давления используется множество разных единиц измерения. Одни часы могут отображать давление в миллиметрах ртутного столба, другие — в гектопаскалях. Полный же список всех единиц выглядит так:
- Паскали
- Бары
- Атмосферы
- Миллиметры ртутного столба
- Метры водного столба
- Фунт-сила на квадратный дюйм (psi)
Зачастую, на часах, смарт-часах и фитнес-браслетах указывается влагозащита именно в атмосферах (atm) или барах (bar). Все современные фитнес-трекеры, начиная от Apple Watch и заканчивая Mi Band, имеют влагозащиту в 5 atm (атмосфер) или 5 bar. Эти единицы взаимозаменяемые, так как 1 atm = 1 bar.
Представить себе давление в атмосферах очень легко, так как 1 атмосфера — это и есть то давление, которое оказывает вся наша атмосфера на поверхность земли. Если бы мы взвесили столб воздуха высотой в 100 км (вся атмосфера, содержащая молекулы) и диаметром в
1 см, он бы весил 1 кг.
Конечно же, когда речь идет о часах, производитель подразумевает не воздух, а воду. Эта маркировка в атмосферах указывает, на какую глубину можно безопасно погружать устройство. Однако вода почти в 775 раз тяжелее воздуха и соответственно давление под водой увеличивается гораздо быстрее.
Если мы хотим поднять давление воздуха с одной атмосферы до двух, нам нужно разместить над головой столб воздуха в 2 раза превышающий высоту атмосферы, то есть, нужны буквально две атмосферы.
Но чтобы ровно настолько же увеличить давление под водой, нам достаточно погрузится на 10 метров. Поэтому, давление в атмосферах под водой можно считать очень просто: 1 атм = 10 метр глубины. Если часы выдерживают давление в 5 атм, это значит, что они выдерживают давление, создаваемое водой на глубине 50 метров.
Одна атмосфера — это также 760 миллиметров ртутного столба или около 10 метров водяного столба. Это значит, что если бы мы попытались выпить ртуть со стакана через трубочку, то нам бы удалось это сделать только, если длина этой трубочки будет менее 76 сантиметров. Одна атмосфера просто не сможет поднять ртуть выше этого значения.
То же касается и воды. Если бы мы налили в очень длинную (например, 15 метровую) пробирку воду, а затем перевернули ее и поставили в ведро с водой, то вода в пробирке опустилась бы под своим весом до отметки в 10 метров, так как дальше давление атмосферы сравнилось бы с силой тяжести:
Почему такая разница между ртутью и водой? Просто ртуть в 13 раз тяжелее воды, именно поэтому давление в 1 атмосферу (давление воздуха над уровнем моря) поднимает воду в пробирке гораздо выше (10 метров против 76 см).
Таким образом, если ваши часы или смартфон показывают давление, например, 730 мм рт. ст., это значит, что атмосферное давление понизилось, так как нормой считается именно 760 мм. Когда давление понизилось, оно уже не сможет поднять так высоко ртуть, соответственно, уровень ртути в трубочке (или пробирке) опустится с 76 см до 73 см.
К слову, именно таким образом и измеряли давление очень долгое время — смотрели, как сильно опускается и поднимается ртуть в стеклянной трубке. Но в современных гаджетах, конечно же, нет никакой ртути. И здесь мы плавно переходим к главному вопросу.
Как работает барометр в смартфонах и часах?
В мобильных устройствах используются MEMS-барометры. MEMS — это аббревиатура, которую можно расшифровать как микроэлектромеханические системы (МЭМС). Собственно, это микроскопические механизмы с электроникой внутри.
Теоретически измерить давление очень легко. Для этого можно сделать небольшую коробочку с гибкой мембраной:
Что будет внутри коробочки — решать вам. Можно полностью откачать все молекулы воздуха, чтобы там образовался вакуум. Тогда мембрана будет изгибаться внутрь под давлением атмосферы. Чем выше давление, тем сильнее будет изогнута мембрана и наоброт:
Можно внутри коробочки сделать давление, равное одной атмосфере, то есть, идеальному давлению на уровне моря — 760 мм рт. ст.
В таком случае наша мембрана будет прогибаться то внутрь, когда атмосферное давление будет выше нормы (выше давления внутри коробочки), то наружу, когда атмосферное давление упадет и станет ниже того, что внутри коробочки:
Это примерно как наши уши. Когда мы взлетаем на самолете или поднимаемся на скоростном лифте, давление атмосферы резко падает (мы «выплываем со дна» атмосферы на «поверхность», где давление гораздо ниже). Но давление воздуха внутри уха (за барабанной перепонкой) осталось прежним, каким было еще на земле.
В результате барабанная перепонка продавливается наружу и мы чувствуем, будто уши заложило. Если глотнуть слюну, в глотке автоматически откроются небольшие отверстия, ведущие прямо к ушам и воздух (избыточное давление в ушах) по трубкам выйдет прямо в носоглотку.
Только в случае с барометром нам ни в коем случае нельзя запускать воздух в коробочку, ведь смысл именно в том, чтобы мембрана изгибалась.
Вот как выглядит реальный мобильный барометр:
Обратите внимание на его размеры (2*2*0.75 мм). И это даже не коробочка с воздухом внутри. Это общая «упаковка», под которой скрывается сама коробочка с мембраной и микросхема. То есть, сам чувствительный элемент здесь еще раз в 6-7 меньше. Вот еще одно фото барометра рядом с линейкой для оценки масштаба:
Ну хорошо, с этим всё ясно. Мембрана движется в ответ на изменение давления, это чисто механический процесс, понятный даже ребенку. Но как смартфон отслеживает это изменение? Какой датчик и каким образом может уловить столь ничтожные колебания кремниевой мембраны? А они действительно настолько незначительные, что увидеть их невооруженным глазом невозможно.
Для отслеживания изгиба мембраны используется мост Уитстона.
Я, правда, не хочу выходить за рамки популярной статьи и углубляться в подробности, которые будут неинтересны широкому кругу читателей. Но, с другой стороны, объяснение принципа работы барометра останется неполным, так как совершенно неясно, как же смартфон фиксирует изгибы мембраны.
Поэтому давайте поступим так. Если тема кажется вам уже раскрытой, не стоит портить впечатление от статьи, погружаясь в детали. Можете просто поставить оценку статье и подписаться на наш Telegram-канал, чтобы не пропускать другие интересные материалы.
Но если вы все еще здесь, тогда продолжим!
Что такое мост Уитстона и как он работает?
Изгиб мембраны регистрируется смартфоном очень просто — чем сильнее она деформируется, тем выше будет электрическое напряжение на ее контактах. То есть, если давление повышается, мембрана изгибается сильнее и электрическое напряжение растет, если понижается — электрическое напряжение падает.
Измерив, сколько вольт «выдает мембрана», мы узнаем, какое там напряжение и, соответственно, как сильно давление воздуха деформировало мембрану.
Остается лишь одна задача — превратить механическую деформацию мембраны в электрический ток. Для этого используют тензорезисторы. Еще их называют пьезорезисторами из-за так называемого пьезорезистивного эффекта, который очень многие путают с пьезоэлектрическим эффектом.
Теперь давайте выдохнем и забудем обо всех этих терминах!
Когда ток идет по проводу, мы можем сделать так, чтобы его стало меньше, то есть, мы можем сделать так, чтобы в какой-то точке электроны «замедлялись»:
Для этого мы используем простую детальку под названием резистор. В физическом плане это может быть просто очень тонкий проводок (тоньше того, по которому ток шел до резистора), спрятанный в «коробочку» или какой-то материал, хуже проводящий ток. Главное то, что после резистора падает напряжение и сила тока (количество электронов, проходящих за секунду).
Это как шланг с водой. Воде гораздо проще течь по широкой трубе, чем по очень узкой. Возвращаясь к нашим трубочкам, попробуйте попить сок из широкой и узкой трубочек. В первом случае вам придется прикладывать гораздо меньше усилий, так как сок будет течь свободнее.
А теперь представьте, что у нас есть резистор, который может физически растягиваться. И когда он растягивается, провода, по которым течет ток, становятся более узкими и длинными. Соответственно, такой резистор будет еще сильнее препятствовать протеканию тока. Но когда резистор будет сжиматься, провода станут более широкими и короткими, то есть, сопротивление такого резистора упадет:
Это и есть тензорезистор! То есть, резистор, сопротивление которого изменяется при физической деформации. Конечно, в современных MEMS-барометрах нет никаких растягивающихся проводков, но принцип ровно тот же. Так называемые пьезорезисторы (по сути — те же тензорезисторы) — это полупроводниковый материал, который изменяет сопротивление при механических воздействиях.
Итак, у нас есть резисторы и тензорезисторы. Что с ними делать дальше? А дальше мы делаем невероятно простую схему, соединяя 4 резистора вот таким образом:
Это и есть мост Уитстона. Когда мы подключим к этому мосту напряжение от батарейки смартфона или часов, то по нему потечет ток и в каждом резисторе этот ток будет замедляться в зависимости от того, какое у каждого резистора сопротивление.
Всё, что нам осталось сделать — это измерить напряжение между точками A и B:
Весь смысл моста Уитстона заключается в том, что если правильно подобрать все четыре сопротивления, между этими точками не будет никакого напряжения, то есть, разницы потенциалов.
Другими словами, если на верхнем и нижнем проводе будет по 5 вольт, то между этими проводами не будет никакого напряжения (потенциал на верхнем и нижнем проводе одинаков), а значит и ток по проводу между точками A и B не будет протекать:
Как же подобрать эти резисторы? Я упущу несложные расчеты и просто скажу, что напряжения между точками A и B не будет в том случае, если R1*R3 = R4*R2. То есть, если умножив сопротивление первого резистора на сопротивление третьего, мы получим такое же значение, как если бы умножили сопротивление четвертого резистора на сопротивление второго, то между точками A и B ток проходить не будет.
Каким образом мы получили эту закономерность (R1*R3=R4*R2), я расскажу только в комментариях, если это вообще кому-то будет интересно.
И вот теперь самое главное! У нас уже есть мост Уитстона, который мы предварительно сбалансировали (балансировка моста — это и есть подбор резисторов нужных сопротивлений, чтобы работала наша простая формула).
Теперь вместо одного из резисторов или же вообще вместо всех резисторов, мы ставим тензорезисторы, которые изменяют свое сопротивление при деформации. А сами резисторы размещаем на мембране, которая изгибается под давлением.
Когда мембрана будет деформироваться, она изменит и форму тензорезисторов (показаны зеленым цветом), из-за чего тот изменит свое сопротивление:
Но как только один из резисторов меняет сопротивление, происходит разбалансировка моста Уитстона, то есть, теперь уже R1*R3 не будет равняться R4*R2 и между точками A и B возникнет напряжение, которое смартфон моментально зафиксирует, так как он непрерывно измеряет электрическое напряжение между точками A и B.
Более того, мост Уитстона позволяет не только определить напряжение, но и направление тока. При определенных значениях сопротивлений напряжение в точке A будет меньше, чем в точке B и ток потечет от B к A, в противном случае, ток потечет в обратную сторону. То есть, мы можем легко определять в какую сторону отклонилась мембрана (падает ли атмосферное давление или растет).
Вот так и замеряют смартфоны и часы атмосферное давление, если они, конечно, оснащены барометром!
Более того, именно на этом принципе и основана работа любых весов. То есть, во всех весах также есть тензорезисторы и мост Уитстона. Когда вы становитесь на весы, то немного деформируете «мембрану», которая изменяет и сопротивление тензорезистора.
И последнее! Если в вашем смартфоне есть датчик давления, тогда для того, чтобы им воспользоваться, нужно скачать соответствующее приложение. Их очень много как на Android, так и для iPhone. Просто в магазине приложений введите в поиск слово «барометр» и скачайте понравившуюся программу. Если же в смартфоне нет датчика, то и приложение работать не будет.
Метеостанция на ладони: зачем в телефоне барометр и как его использовать
Вы привыкли узнавать погоду на ближайшие дни из Интернета, а ваш знакомый кидает мимолетный взгляд на телефон и выдает прогнозы точнее официальных? Только он один знает, в какие дни лучше всего клюет карась? Видимо, в вашем окружении завелся маг и заклинатель погоды. Вам повезло: может быть, однажды он по вашей просьбе вызовет дождь или разгонит тучи над городом…
На самом деле ничего загадочного в этом нет. Просто ваш приятель использует барометр в телефоне, который и дает ему волшебные подсказки. Хотите сами стать таким же «магом»? Тогда читайте, для чего и как использовать барометр в мобильном устройстве.
Возможности мобильного барометра
Барометр – это прибор для измерения атмосферного давления – силы, с которой воздушная масса давит на поверхность земли. Наблюдение за изменением его показателей и правильное понимание значений позволяет предугадывать:
- Как уже сказано, грядущее изменение погоды. Снижение атмосферного давления обычно происходит перед дождями и снегопадами, повышение – перед установлением ясных, солнечных дней.
- Возможное ухудшение самочувствия у метеочувствительных людей.
- Скорую смену направления ветра (полезно для туристов, любителей запускать дроны, спортсменов-парапланеристов, парашютистов, серферов и т. д).
- Изменения в поведении рыб и животных (пригодится охотникам и рыболовам).
Применительно к мобильному телефону функции барометра полезны для:
- Определения точного положения аппарата в пространстве. Дает возможность узнать не только широту и долготу, но и высоту над уровнем моря. Это может пригодиться при фотографировании (некоторые приложения наносят координаты телефона на снимки) и в навигации – составлении маршрутов с учетом рельефа местности.
- Управления опциями устройства в зависимости от силы нажатия на экран (например, изменением толщины штриха при рисовании).
При желании барометру в телефоне можно найти еще массу применений, например, определять с его помощью высоту объектов. Но это уже на любителя.
Как узнать, есть ли барометр в интересующем вас телефоне
Проще всего это узнать из характеристик аппарата. Если смартфон способен определять давление, в числе его сенсоров должен быть упомянут барометрический датчик или датчик давления. На собственном телефоне наличие этого датчика можно выяснить с помощью приложений, собирающих сведения о системе и аппаратном обеспечении, например:
- Phone information (на скриншоте выше).
- Aida 64.
- Мое устройство .
- DeviceInfoHW и аналоги.
Это утилиты для девайсов на Андроиде.
Что касается айфонов, то здесь бародатчики установлены только на следующие модели: iPhone 6, 6S, 6 Плюс 6S Плюс, 7, 7 Плюс, 8, 8 Плюс и X.
Тестирование работоспособности и точности сенсора давления проводится под открытым небом с включенной функцией геолокации. Однако если нет возможности (или желания) выходить на улицу, берите на вооружение метод, предложенный нашими находчивыми соотечественниками – поместите телефон в прозрачный герметичный мешочек, наполненный воздухом, и сдавливайте его руками. При нажатии на мешок давление воздуха внутри него увеличивается, и исправный датчик на это реагирует.
Насколько точно снимает показатели барометрический сенсор вашего телефона, с помощью мешка не определить, но чувствительность проверить можно.
Лучшие приложения-барометры
Чтобы «превратить» телефон в полноценный измерительный прибор, не хватает самой малости – приложения, которое сымитирует его работу. Таких приложений немало, и основная их масса доступна бесплатно. Ниже неполный перечень наиболее удобных, красивых и наглядных, на мой взгляд.
Для Андроид
- Барометр про – стильно оформленное приложение + виджет на рабочий стол. Функционирует не хуже настоящего профессионального прибора. Использует показатели датчиков давления, GPS и данные ближайших к вам метеостанций. Отображает показатели в гекто-Паскалях (hPa) и дюймах ртутного столба (INhg). Дополнительно показывает температуру и влажность воздуха. Сохраняет историю измерений.
- Точный барометр . Показывает местное и среднее (по уровню моря) атмосферное давление. Получает информацию как с датчиков телефона, так и с метеостанции ближайшего к вам аэропорта. Поддерживает возможность калибровки бародатчика. Ведет автоматическую запись показателей через заданные промежутки времени. Отображает результаты в разных единицах измерения – hPa, INhg, мм. ртутного столба и других.
Для Android и iOS
- BarometerPlus. Помимо атмосферного давления, изменяет температуру и влажность воздуха (если это функции поддерживает телефон). Ведет историю и уведомляет пользователя об изменениях показателей. Получает и анализирует информацию с датчиков устройства и ближайших метеостанций. Поддерживает множество единиц измерений. Имеет функцию калибровки сенсора и набор красивых тем оформления.
Для iOS
- Барометр альтиметр и термометр . Отображает показатели атмосферного давления, влажности, скорости ветра, наружной температуры воздуха и другую информацию о погоде в вашей местности, а также координаты телефона по спутнику. Получает и обрабатывает информацию с датчиков устройства и ближайших метеостанций. Если айфон не оборудован сенсором давления, выдает показатели только на основании сторонних источников.
Для использования этих и других аналогичных приложений особые знания не нужны. Достаточно выбрать удобные для себя единицы измерения и включить функцию определения геопозиции смартфона. После этого всё, можно удивлять друзей предсказаниями.